Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries

Author:

Raić Matea,Mikac LaraORCID,Marić Ivan,Štefanić Goran,Škrabić MarkoORCID,Gotić Marijan,Ivanda Mile

Abstract

Commercial micrometer silicon (Si) powder was investigated as a potential anode material for lithium ion (Li-ion) batteries. The characterization of this powder showed the mean particle size of approx.75.2 nm, BET surface area of 10.6 m2/g and average pore size of 0.56 nm. Its band gap was estimated to 1.35 eV as determined using UV-Vis diffuse reflectance spectra. In order to increase the surface area and porosity which is important for Li-ion batteries, the starting Si powder was ball-milled and threatened by metal-assisted chemical etching. The mechanochemical treatment resulted in decrease of the particle size from 75 nm to 29 nm, an increase of the BET surface area and average pore size to 16.7 m2/g and 1.26 nm, respectively, and broadening of the X-ray powder diffraction (XRD) lines. The XRD patterns of silver metal-assisted chemical etching (MACE) sample showed strong and narrow diffraction lines typical for powder silicon and low-intensity diffraction lines typical for silver. The metal-assisted chemical etching of starting Si material resulted in a decrease of surface area to 7.3 m2/g and an increase of the average pore size to 3.44 nm. These three materials were used as the anode material in lithium-ion cells, and their electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge cycles. The enhanced electrochemical performance of the sample prepared by MACE is attributed to increase in pore size, which are large enough for easy lithiation. These are the positive aspects of the application of MACE in the development of an anode material for Li-ion batteries.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3