Effect of Ultrasound on the Green Selective Oxidation of Benzyl Alcohol to Benzaldehyde

Author:

Chevallier Marion L.,Dessolin Sarah,Serres Fanny,Bruyas Lucile,Chatel Gregory

Abstract

Oxidation of alcohols plays an important role in industrial chemistry. Novel green techniques, such as sonochemistry, could be economically interesting by improving industrial synthesis yield. In this paper, we studied the selective oxidation of benzyl alcohol as a model of aromatic alcohol compound under various experimental parameters such as substrate concentration, oxidant nature and concentration, catalyst nature and concentration, temperature, pH, reaction duration, and ultrasound frequency. The influence of each parameter was studied with and without ultrasound to identify the individual sonochemical effect on the transformation. Our main finding was an increase in the yield and selectivity for benzaldehyde under ultrasonic conditions. Hydrogen peroxide and iron sulfate were used as green oxidant and catalyst. Coupled with ultrasound, these conditions increased the benzaldehyde yield by +45% compared to silent conditions. Investigation concerning the transformation mechanism revealed the involvement of radical species.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3