A Ratiometric Fluorescent Sensor Based on Chelation-Enhanced Fluorescence of Carbon Dots for Zinc Ion Detection

Author:

Lu Guangrong1,Jia Zhenzhen2,Yu Mengdi2,Zhang Mingzhen2ORCID,Xu Changlong1

Affiliation:

1. Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China

2. School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

Abstract

Zinc ion, one of the most important transition metal ions in living organisms, plays a crucial role in the homeostasis of the organism. The disorder of zinc is associated with many major diseases. It is highly desirable to develop selective and sensitive methods for the real-time detection of zinc ions. In this work, double-emitting fluorescent carbon dots (CDs) are prepared by a solvothermal method using glutathione, L-aspartic acid, and formamide as the raw materials. The carbon dots specifically recognize zine ions and produce a decrease in fluorescence intensity at 684 nm and an increase at 649 nm, leading to a ratiometric fluorescent sensor for zinc detection. Through surface modification and spectral analysis, the surface groups including carboxyl, carbonyl, hydroxyl, and amino groups, and C=N in heterocycles of CDs are revealed to synergistically coordinate Zn2+, inducing the structural changes in the emission site. The CDs can afford a low limit of detection of ~5 nM for Zn2+ detection with good linearity in the range of 0.02–5 μM, showing good selectivity as well. The results from real samples including fetal bovine serum, milk powder, and zinc gluconate oral solution indicated the good applicability of the CDs in the determination of Zn2+.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3