Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors

Author:

Lee Myeongjong1,Ko Hyeongtak1,Oh Seacheon1

Affiliation:

1. Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Cheonan 31080, Chungcheongnam-do, Republic of Korea

Abstract

Currently, most plastic waste stems from packaging materials, with a large proportion of this waste either discarded by incineration or used to derive fuel. Accordingly, there is growing interest in the use of pyrolysis to chemically recycle non-recyclable (i.e., via mechanical means) plastic waste into petrochemical feedstock. This comparative study compared pyrolysis characteristics of two types of reactors, namely fixed and fluidized bed reactors. Kinetic analysis for pyrolysis of SRF was also performed. Based on the kinetic analysis of the pyrolytic reactions using differential and integral methods applied to the TGA results, it was seen that the activation energy was lower in the initial stage of pyrolysis. This trend can be mainly attributed to the initial decomposition of PP components, which was subsequently followed by the decomposition of PE. From the kinetic analysis, the activation energy corresponding to the rate of pyrolysis reaction conversion was obtained. In conclusion, pyrolysis carried out using the fluidized bed reactor resulted in a more active decomposition of SRF. The relatively superior performance of this reactor can be attributed to the increased mass and heat transfer effects caused by fluidizing gases, which result in greater gas yields. Regarding the characteristics of liquid products generated during pyrolysis, it was seen that the hydrogen content in the liquid products obtained from the fluidized bed reactor decreased, leading to the formation of oils with higher molecular weights and higher C/H ratios, because the pyrolysis of SRF in the fluidized bed reactor progressed more rapidly than that in the fixed bed reactor.

Funder

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3