iTRAQ-BASED Proteomic Analysis of the Mechanism of Fructose on Improving Fengycin Biosynthesis in Bacillus Amyloliquefaciens

Author:

Lu Hedong,Li Ruili,Yang Panping,Luo Weibo,Chen Shunxian,Bilal MuhammadORCID,Xu Hai,Gu Chengyuan,Liu Shuai,Zhao Yuping,Geng Chengxin,Zhao Li

Abstract

Fengycin, as a lipopeptide produced by Bacillus subtilis, displays potent activity against filamentous fungi, including Aspergillus flavus and Soft-rot fungus, which exhibits a wide range of potential applications in food industries, agriculture, and medicine. To better clarify the regulatory mechanism of fructose on fengycin biosynthesis, the iTRAQ-based proteomic analysis was utilized to investigate the differentially expressed proteins of B. amyloliquefaciens fmb-60 cultivated in ML (without fructose) and MLF (with fructose) medium. The results indicated that a total of 811 proteins, including 248 proteins with differential expression levels (162 which were upregulated (fold > 2) and 86, which were downregulated (fold < 0.5) were detected, and most of the proteins are associated with cellular metabolism, biosynthesis, and biological regulation process. Moreover, the target genes’ relative expression was conducted using quantitative real-time PCR to validate the proteomic analysis results. Based on the results of proteome analysis, the supposed pathways of fructose enhancing fengycin biosynthesis in B. amyloliquefaciens fmb-60 can be summarized as improvement of the metabolic process, including cellular amino acid and amide, fatty acid biosynthesis, peptide and protein, nucleotide and nucleobase-containing compound, drug/toxin, cofactor, and vitamin; reinforcement of peptide/protein translation, modification, biological process, and response to a stimulus. In conclusion, this study represents a comprehensive and systematic investigation of the fructose mechanism on improving fengycin biosynthesis in B. amyloliquefaciens, which will provide a road map to facilitate the potential application of fengycin or its homolog in defending against filamentous fungi.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3