A DFT Study of Alkaline Earth Metal-Doped FAPbI3 (111) and (100) Surfaces

Author:

RaeisianAsl MaryamORCID,Sarabadani Tafreshi SaeedehORCID,de Leeuw Nora H.ORCID

Abstract

Density functional theory calculations have been performed to study the effect of replacing lead by alkaline earth metals on the stability, electronic and optical properties of the formamidinium lead triiodide (FAPbI3) (111) and (100) surfaces with different terminations in the form of FAPb1-xAExI3 structures, where AE is Be, Mg or Ca. It is revealed that the (111) surface is more stable, indicating metallic characteristics. The (100) surfaces exhibit a suitable bandgap of around 1.309 and 1.623 eV for PbI5 and PbI6 terminations, respectively. Increases in the bandgaps as a result of Mg- and Ca-doping of the (100) surface were particularly noted in FAPb0.96Ca0.04I3 and FAPb0.8Ca0.2I3 with bandgaps of 1.459 and 1.468 eV, respectively. In the presence of Be, the band gap reduces critically by about 0.315 eV in the FAPb0.95Be0.05I3 structure, while increasing by 0.096 eV in FAPb0.96Be0.04I3. Optimal absorption, high extinction coefficient and light harvesting efficiency were achieved for plain and doped (100) surfaces in the visible and near UV regions. In order to improve the optical properties of the (111)-PbI3 surface in initial visible areas, we suggest calcium-doping in this surface to produce FAPb0.96Ca0.04I3, FAPb0.92Ca0.08I3, and FAPb0.88Ca0.12I3 structures.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3