Abstract
A Ni-P amorphous alloy was deposited on a low carbon steel substrate via electroless plating. Further, the prepared samples were crystallized under the high temperature with a range from 200 °C to 500 °C in air for 1 h. The crystallization process was studied via XRD, AFM, and XPS, and anodic electrochemical behavior was investigated by potentiostatic methods in a 3.5 wt% NaCl solution. The experimental results indicate that the diffusion, dissolution, and enrichment of the component elements in the Ni-P alloy are essential during crystallization because the various corrosion behaviors corresponding to Ni and P are directly affected. More importantly, under the 400 °C treatment, H2PO2− was enriched in the alloy, which effectively hinders the anodic dissolution of nickel and forms a complete adsorption layer on the surface of the alloy. Our results demonstrate that P can effectively block the anodic dissolution of Ni during the corrosion process, and the crystallization process can effectively promote the surface enrichment of P to improve the corrosion resistance of the coating.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Nature Science Foundation of China
Jinhua Science and Technology Bureau
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献