Author:
Videv Pavel,Mladenova Kirilka,Andreeva Tonya D.,Park Jong Hun,Moskova-Doumanova Veselina,Petrova Svetla D.,Doumanov Jordan A.
Abstract
Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl− channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs−1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.
Funder
Bulgarian Science Fund
Ministry of Education and Science
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献