The Two-Way Switch Role of ACE2 in the Treatment of Novel Coronavirus Pneumonia and Underlying Comorbidities

Author:

Pang Xiao Cong,Zhang Han Xu,Zhang Zhi,Rinkiko Suguro,Cui Yi MinORCID,Zhu Yi Zhun

Abstract

December 2019 saw the emergence of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has spread across the globe. The high infectivity and ongoing mortality of SARS-CoV-2 emphasize the demand of drug discovery. Angiotensin-converting enzyme II (ACE2) is the functional receptor for SARS-CoV-2 entry into host cells. ACE2 exists as a membrane-bound protein on major viral target pulmonary epithelial cells, and its peptidase domain (PD) interacts SARS-CoV-2 spike protein with higher affinity. Therefore, targeting ACE2 is an important pharmacological intervention for a SARS-CoV-2 infection. In this review, we described the two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities, and discussed the potential effect of the ACE inhibitor and angiotensin receptor blocker on a hypertension patient with the SARS-CoV-2 infection. In addition, we analyzed the S-protein-binding site on ACE2 and suggested that blocking hot spot-31 and hot spot-353 on ACE2 could be a therapeutic strategy for preventing the spread of SARS-CoV-2. Besides, the recombinant ACE2 protein could be another potential treatment option for SARS-CoV-2 induced acute severe lung failure. This review could provide beneficial information for the development of anti-SARS-CoV-2 agents via targeting ACE2 and the clinical usage of renin-angiotensin system (RAS) drugs for novel coronavirus pneumonia treatment.

Funder

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference109 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. Statement on the Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV) https://www.who.int/zh/news-room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

3. A pneumonia outbreak associated with a new coronavirus of probable bat origin

4. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins

5. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3