Affiliation:
1. School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
2. School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
Abstract
Acacia saligna’s secondary metabolites show promise in treating type 2 diabetes mellitus and its related conditions. We previously discovered that methanolic extracts, isolated flavonoids, and cyclitols effectively preserve mitochondria in 3T3-L1 adipocytes. In this current work, quantification of lipid droplet levels with Oil Red O assay showed a noticeable decrease in lipogenesis in 3T3-L1 cells. Methanolic leaf and bark extracts and isolated compounds, (−)-epicatechin 6 and myricitrin 8, reduced cellular lipid levels by 21.15% to 25.28%, respectively. mRNA levels of key regulators of mitochondrial biogenesis, such as adiponectin, PGC-1α, and mtTFA, were increased. Methanolic flower extract (FL-MeOH) and its chemical components, naringenin 1 and D-(+)-pinitol 5a, increased these gene levels from 10% to 29% at the higher dose. Our study found that FL-MeOH slightly reduced pro-inflammatory cytokines TNF-α and IL-6, attributed to two phytochemicals, naringenin-7-O-α-L-arabinofuranoside 2 and D-(+)-pinitol 5a. Western blot analysis also showed that adipocytes treated with MeOH extracts had higher GLUT-4 expression levels than untreated adipocytes. Overall, A. saligna extracts and their isolated compounds demonstrated anti-lipogenesis activity during 3T3-L1 cell differentiation, modulation of transcriptional levels of adiponectin, PGC-1α, and mtTFA, reducing TNF-α and IL-6 mRNA levels, promoting mitochondrial biogenesis, and enhancing GLUT-4 expression.
Funder
Ministry of Religious Affairs and the Indonesia Endowment Funds for Education (LPDP): SK Dirjen Diktis
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science