One-Step Route to Fe2O3 and FeSe2 Nanoparticles Loaded on Carbon-Sheet for Lithium Storage

Author:

Wei Denghu,Xu Leilei,Wang Zhiqi,Jiang Xiaojie,Liu Xiaxia,Ma Yuxue,Wang Jie

Abstract

Iron-based anode materials, such as Fe2O3 and FeSe2 have attracted widespread attention for lithium-ion batteries due to their high capacities. However, the capacity decays seriously because of poor conductivity and severe volume expansion. Designing nanostructures combined with carbon are effective means to improve cycling stability. In this work, ultra-small Fe2O3 nanoparticles loaded on a carbon framework were synthesized through a one-step thermal decomposition of the commercial C15H21FeO6 [Iron (III) acetylacetonate], which could be served as the source of Fe, O, and C. As an anode material, the Fe2O3@C anode delivers a specific capacity of 747.8 mAh g−1 after 200 cycles at 200 mA g−1 and 577.8 mAh g−1 after 365 cycles at 500 mA g−1. When selenium powder was introduced into the reaction system, the FeSe2 nano-rods encapsulated in the carbon shell were obtained, which also displayed a relatively good performance in lithium storage capacity (852 mAh g−1 after 150 cycles under the current density of 100 mA·g−1). This study may provide an alternative way to prepare other carbon-composited metal compounds, such as FeNx@C, FePx@C, and FeSx@C, and found their applications in the field of electrochemistry.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3