Mytoxin B and Myrothecine A Induce Apoptosis in Human Hepatocarcinoma Cell Line SMMC-7721 via PI3K/Akt Signaling Pathway

Author:

Song Huiliang,Fu Yi,Wan Dan,Xia Wenjing,Lyu Fengwei,Liu Lijun,Shen Li

Abstract

Trichothecene macrolides comprise a class of valuable leading compounds in developing anticancer drugs, however, there are few reports concerning their anticancer mechanisms, especially the anticancer mechanism of the 10,13-cyclotrichothecane derivatives that are found mainly in symbiotic fungi. In vitro anticancer activity of two trichothecene macrolides mytoxin B and myrothecine A against the human hepatocarcinoma cell line SMMC-7721 was investigated in the present study. MTT assay showed that mytoxin B and myrothecine A inhibited the proliferation of SMMC-7721 cells in dose- and time-dependent manners. Annexin V-FITC/PI dual staining assay revealed that mytoxin B and myrothecine A both could induce SMMC-7721 cells apoptosis in a dose-dependent manner. The decreased expression level of anti-apoptotic protein Bcl-2 and the increased expression level of pro-apoptotic protein Bax were observed apparently in Western blot analysis. The reduced ratio of Bcl-2/Bax further confirmed the apoptosis-inducing effect of mytoxin B and myrothecine A on SMMC-7721 cells. Moreover, the expression levels of caspases-3, -8, and -9, and cleaved caspases-3, -8, and -9 were all upregulated in both mytoxin B and myrothecine A-treated cells in Western blot analysis, which indicated that both compounds might induce SMMC-7721 cells apoptosis through not only the death receptor pathway but also the mitochondrial pathway. Finally, mytoxin B and myrothecine A were found to reduce the activity of PI3K/Akt signaling pathway that was similar to the effect of LY294002 (a potent and specific PI3K inhibitor), suggesting that both mytoxin B and myrothecine A might induce SMMC-7721 cells apoptosis via PI3K/Akt pathway.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3