Molecular Dynamics Simulation on Solidification Microstructure and Tensile Properties of Cu/SiC Composites

Author:

Yan Wanjun1,Lu Yuhang12,Gao Tinghong2ORCID,Wang Junjie12,Tang Xin2,Wang Nan2

Affiliation:

1. College of Electronics and Information Engineering, Anshun University, Anshun 561000, China

2. Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China

Abstract

The shape of ceramic particles is one of the factors affecting the properties of metal matrix composites. Exploring the mechanism of ceramic particles affecting the cooling mechanical behavior and microstructure of composites provides a simulation basis for the design of high-performance composites. In this study, molecular dynamics methods are used for investigating the microstructure evolution mechanism in Cu/SiC composites containing SiC particles of different shapes during the rapid solidification process and evaluating the mechanical properties after cooling. The results show that the spherical SiC composites demonstrate the highest degree of local ordering after cooling. The more ordered the formation is of face-centered-cubic and hexagonal-close-packed structures, the better the crystallization is of the final composite and the less the number of stacking faults. Finally, the results of uniaxial tensile in three different directions after solidification showed that the composite containing spherical SiC particles demonstrated the best mechanical properties. The findings of this study provide a reference for understanding the preparation of Cu/SiC composites with different shapes of SiC particles as well as their microstructure and mechanical properties and provide a new idea for the experimental and theoretical research of Cu/SiC metal matrix composites.

Funder

National Natural Science Foundation of China

Anshun College Graduate Innovation Special Program Project

Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University

Guizhou Province Science and Technology Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3