Current Strategies for Modulating Tumor-Associated Macrophages with Biomaterials in Hepatocellular Carcinoma

Author:

Liu Qiaoyun1ORCID,Huang Wei1,Liang Wenjin1ORCID,Ye Qifa12

Affiliation:

1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, China

2. The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China

Abstract

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related deaths in the world. However, there are currently few clinical diagnosis and treatment options available, and there is an urgent need for novel effective approaches. More research is being undertaken on immune-associated cells in the microenvironment because they play a critical role in the initiation and development of HCC. Macrophages are specialized phagocytes and antigen-presenting cells (APCs) that not only directly phagocytose and eliminate tumor cells, but also present tumor-specific antigens to T cells and initiate anticancer adaptive immunity. However, the more abundant M2-phenotype tumor-associated macrophages (TAMs) at tumor sites promote tumor evasion of immune surveillance, accelerate tumor progression, and suppress tumor-specific T-cell immune responses. Despite the great success in modulating macrophages, there are still many challenges and obstacles. Biomaterials not only target macrophages, but also modulate macrophages to enhance tumor treatment. This review systematically summarizes the regulation of tumor-associated macrophages by biomaterials, which has implications for the immunotherapy of HCC.

Funder

National Natural Science Foundation of China

Wuhan Science and Technology Project

Medical Science Advancement Program (Clinical Medicine) of Wuhan University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference72 articles.

1. Hepatocellular carcinoma;Kelley;Nat. Rev. Dis. Prim.,2021

2. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma;Llovet;Nat. Cancer,2022

3. The Basis of Oncoimmunology;Palucka;Cell,2016

4. Using immunotherapy to boost the abscopal effect;Ngwa;Nat. Rev. Cancer,2018

5. Advances in immunotherapy for hepatocellular carcinoma;Sangro;Nat. Rev. Gastroenterol. Hepatol.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3