Store-Operated Calcium Entry Inhibition and Plasma Membrane Calcium Pump Upregulation Contribute to the Maintenance of Resting Cytosolic Calcium Concentration in A1-like Astrocytes

Author:

Poejo Joana1ORCID,Berrocal María12,Saez Lucía2,Gutierrez-Merino Carlos1ORCID,Mata Ana M.12ORCID

Affiliation:

1. Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, 06006 Badajoz, Spain

2. Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain

Abstract

Highly neurotoxic A1-reactive astrocytes have been associated with several human neurodegenerative diseases. Complement protein C3 expression is strongly upregulated in A1 astrocytes, and this protein has been shown to be a specific biomarker of these astrocytes. Several cytokines released in neurodegenerative diseases have been shown to upregulate the production of amyloid β protein precursor (APP) and neurotoxic amyloid β (Aβ) peptides in reactive astrocytes. Also, aberrant Ca2+ signals have been proposed as a hallmark of astrocyte functional remodeling in Alzheimer’s disease mouse models. In this work, we induced the generation of A1-like reactive astrocytes after the co-treatment of U251 human astroglioma cells with a cocktail of the cytokines TNF-α, IL1-α and C1q. These A1-like astrocytes show increased production of APP and Aβ peptides compared to untreated U251 cells. Additionally, A1-like astrocytes show a (75 ± 10)% decrease in the Ca2+ stored in the endoplasmic reticulum (ER), (85 ± 10)% attenuation of Ca2+ entry after complete Ca2+ depletion of the ER, and three-fold upregulation of plasma membrane calcium pump expression, with respect to non-treated Control astrocytes. These altered intracellular Ca2+ dynamics allow A1-like astrocytes to efficiently counterbalance the enhanced release of Ca2+ from the ER, preventing a rise in the resting cytosolic Ca2+ concentration.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3