Preparation and Thermal Properties of Magnetic PW@CaCO3@Fe3O4 Phase-Change Microcapsules and Their Application to Textile Fabrics

Author:

Song Xiaolei1,Xu Congzhu12,Wei Hong3,Li Yonggui12,Sun Runjun2,Wang Chunxia4,Dong Jie2ORCID,Feng Xinqun5

Affiliation:

1. Faculty of Clothing and Design, Minjiang University, Fuzhou 350108, China

2. College of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China

3. Hangzhou Jingsha Information Technology Co., Ltd., Hangzhou 311200, China

4. School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China

5. College of Fashion and Design, Donghua University, Shanghai 201620, China

Abstract

Multifunctional thermal regulation materials with good thermal properties, efficient magnetic performance, and satisfactory interface bonding on fabrics are highly desirable for protective fabrics, building winter protection materials, medical thermal regulation materials, and special-environment work clothing. Herein, a new class of magnetic phase-change PW@CaCO3@Fe3O4 microcapsules was successfully produced by controlling the content of magnetic Fe3O4 through a self-assembly method. The microstructure, chemical composition, phase-change behavior, and magnetic properties of the products were sequentially characterized and analyzed. The findings revealed that the obtained microcapsules possessed regular spherical structure with uniform size and excellent thermal properties. Furthermore, PW@CaCO3 with Fe3O4 (i.e., 8% mass fraction) showed the highest thermal regulation and magnetic properties and reached an enthalpy value of 94.25 J·g−1, which is clearly superior to the value of 77.51 J·g−1 for PW@CaCO3 microcapsules. At the same time, the encapsulation efficiency of 38.7% and saturation magnetization of 2.50 emu·g−1 were the best among the four given samples. Therefore, the good paramagnetic feature had a significant synergistic effect on the thermal properties of the PW@CaCO3 microcapsules under study. More importantly, multifunctional fabrics loaded with PW@CaCO3@Fe3O4 microcapsules still showed an enthalpy value of 25.81 J·g−1 after several washes and have the potential to be used widely in the field of temperature control. The thermal regulation fabrics in this study exhibited excellent thermal properties and fastness, which contribute to their practical applications in advancing multifunctional textiles and high-technology modern fabrics.

Funder

Research Project of the Fashu Foundation of Minjiang University

Major Science and Technology Project of Nanping

Science and technology projects of Fujian Province

Science and Technology Projects of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3