Nanoparticle-Imprinted Silica Gel for the Size-Selective Capture of Silver Ultrafine Nanoparticles from Water

Author:

Pallavicini Piersandro1ORCID,Preti Luca1,Protopapa Maria L.2,Carbone Daniela2,Capodieci Laura2ORCID,Diaz Fernandez Yuri A.1,Milanese Chiara1ORCID,Taglietti Angelo1ORCID,Doveri Lavinia1ORCID

Affiliation:

1. Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy

2. ENEA-Italian National Agency for New Technologies, Energy and the Sustainable Economic Development, Division Sustainable Materials-Brindisi Research Center, S.S. 7 Appia km. 706, 72100 Brindisi, Italy

Abstract

A synthetic approach has been developed to prepare silica gel monoliths that embed well separated silver or gold spherical nanoparticles (NP), with diameters of 8, 18 and 115 nm. Fe3+, O2/cysteine and HNO3 were all successfully used to oxidize and remove silver NP from silica, while aqua regia was necessary for gold NP. In all cases, NP-imprinted silica gel materials were obtained, with spherical voids of the same dimensions of the dissolved particles. By grinding the monoliths, we prepared NP-imprinted silica powders that were able to efficiently reuptake silver ultrafine NP (Ag-ufNP, d = 8 nm) from aqueous solutions. Moreover, the NP-imprinted silica powders showed a remarkable size selectivity, based on the best match between NP radius and the curvature radius of the cavities, driven by the optimization of attractive Van der Waals forces between SiO2 and NP. Ag-ufNP are increasingly used in products, goods, medical devices, disinfectants, and their consequent diffusion in the environment is of rising concern. Although limited here to a proof-of-concept level, the materials and methods described in this paper may be an efficient solution for capturing Ag-ufNP from environmental waters and to safely dispose them.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3