A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone)

Author:

Tong Laifa1,Zhou Mi1ORCID,Chen Yulong1,Lu Kai1,Zhang Zhaohua1,Mu Yuesong1,He Zejian1

Affiliation:

1. Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China

Abstract

In this paper, the copolymerization of poly (p-dioxanone) (PPDO) and polylactide (PLA) was carried out via a Diels–Alder reaction to obtain a new biodegradable copolymer with self-healing abilities. By altering the molecular weights of PPDO and PLA precursors, a series of copolymers (DA2300, DA3200, DA4700 and DA5500) with various chain segment lengths were created. After verifying the structure and molecular weight by 1H NMR, FT-IR and GPC, the crystallization behavior, self-healing properties and degradation properties of the copolymers were evaluated by DSC, POM, XRD, rheological measurements and enzymatic degradation. The results show that copolymerization based on the DA reaction effectively avoids the phase separation of PPDO and PLA. Among the products, DA4700 showed a better crystallization performance than PLA, and the half-crystallization time was 2.8 min. Compared to PPDO, the heat resistance of the DA copolymers was improved and the Tm increased from 93 °C to 103 °C. Significantly, the rheological data also confirmed that the copolymer was self-healing and showed obvious self-repairing properties after simple tempering. In addition, an enzyme degradation experiment showed that the DA copolymer can be degraded by a certain amount, with the degradation rate lying between those of PPDO and PLA.

Funder

Zhang Dahong’s Zhejiang Province Major Science and Technology Special Major Social Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3