Secondary Metabolites from Dendrobium nobile and Their Activities Induce Metabolites Apoptosis in OSC-19 Cells

Author:

Meng Yufan1ORCID,Zhang Maosheng1,Fang Yike1,Yang Jianwen1,Dong Minjian12ORCID,Sun Chengxin12ORCID,Xiao Shiji12

Affiliation:

1. Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China

2. Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China

Abstract

To identify potential drug candidates, secondary metabolites of Dendrobium nobile were performed. As a result, two previously undescribed phenanthrene derivatives with a spirolactone ring (1 and 2), along with four known compounds, N-trans-cinnamoyltyramine (3), N-trans-p-coumaroyltyramine (4), N-trans-feruloyltyramine (5), and moscatilin (6), were isolated from Dendrobium nobile. The structures of the undescribed compounds were elucidated using NMR spectroscopy, electronic circular dichroism (ECD) calculations, and extensive spectroscopic data analysis. The cytotoxic effects of compounds on human tongue squamous cells OSC-19 were determined using MTT at concentrations of 2.5 μM, 5 μM, 10 μM, and 20 μM. Compound 6 exhibited potent inhibitory activity against OSC-19 cells with an IC50 of 1.32 μM. Migration assays and western blot assays demonstrated that compound 6 effectively inhibited migration by down-regulating MMP2 and MMP9 at concentrations of 0.5 μM and 1 μM. To investigate its effect on apoptosis, we performed AO/PI staining, flow cytometry, and WB experiments. The results showed that increasing concentrations led to increased red fluorescence, decreased green fluorescence, increased apoptosis rate, decreased expression of bcl-2, caspase 3, caspase 9, and parp proteins, and increased bax expression. Furthermore, the phosphorylation of JNK and P38 was activated, suggesting that compound 6 may induce apoptosis via the MAPK pathway.

Funder

National Natural Sciences Foundation of China

Science and Technology Department of Guizhou Province

Zunyi Science and Technology Bureau

Cultivating New Academic Talents and Exploring Innovation Special Foundation of Zunyi Medical University

Zunyi Medical University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3