Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle

Author:

Ma Xiaohua1,Lv Yingxin2,Liu Panpan2,Hao Yuanqiang1,Xia Ning2ORCID

Affiliation:

1. Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China

2. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China

Abstract

Heterogeneous protease biosensors show high sensitivity and selectivity but usually require the immobilization of peptide substrates on a solid interface. Such methods exhibit the disadvantages of complex immobilization steps and low enzymatic efficiency induced by steric hindrance. In this work, we proposed an immobilization-free strategy for protease detection with high simplicity, sensitivity and selectivity. Specifically, a single-labeled peptide with oligohistidine-tag (His-tag) was designed as the protease substrate, which can be captured by a nickel ion-nitrilotriacetic acid (Ni-NTA)-conjugated magnetic nanoparticle (MNP) through the coordination interaction between His-tag and Ni-NTA. When the peptide was digested by protease in a homogeneous solution, the signal-labeled segment was released from the substrate. The unreacted peptide substrates could be removed by Ni-NTA-MNP, and the released segments remained in solution to emit strong fluorescence. The method was used to determine protease of caspase-3 with a low detection limit (4 pg/mL). By changing the peptide sequence and signal reporters, the proposal could be used to develop novel homogeneous biosensors for the detection of other proteases.

Funder

Program for Innovative Research Team of Science and Technology in the University of Henan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3