A Review on the Design of Carbon-Based Nanomaterials as MRI Contrast Agents

Author:

Garifo Sarah1,Vangijzegem Thomas1ORCID,Stanicki Dimitri1ORCID,Laurent Sophie12ORCID

Affiliation:

1. NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium

2. Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium

Abstract

The administration of magnetic resonance imaging (MRI) contrast agents (CAs) has been conducted since 1988 by clinicians to enhance the clarity and interpretability of MR images. CAs based on gadolinium chelates are the clinical standard used worldwide for the diagnosis of various pathologies, such as the detection of brain lesions, the visualization of blood vessels, and the assessment of soft tissue disorders. However, due to ongoing concerns associated with the safety of gadolinium-based contrast agents, considerable efforts have been directed towards developing contrast agents with better relaxivities, reduced toxicity, and eventually combined therapeutic modalities. In this context, grafting (or encapsulating) paramagnetic metals or chelates onto (within) carbon-based nanoparticles is a straightforward approach enabling the production of contrast agents with high relaxivities while providing extensive tuneability regarding the functionalization of the nanoparticles. Here, we provide an overview of the parameters defining the efficacy of lanthanide-based contrast agents and the subsequent developments in the field of nanoparticular-based contrast agents incorporating paramagnetic species.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3