HOO• as the Chain Carrier for the Autocatalytic Photooxidation of Benzylic Alcohols

Author:

Wang Xiao-Yu1,Lao Huan-E1,Zhang Hao-Yue1,Wang Yi2,Zhang Qing1,Wu Jie-Qing1,Li Yu-Feng1ORCID,Zhu Hong-Jun1ORCID,Mao Jian-You1,Pan Yi2

Affiliation:

1. School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and depicted different mechanisms involving the photoinduction of •O2− as a critical reactive oxygen species (ROS). However, based on comprehensive mechanistic investigations, including control experiments, radical quenching experiments, EPR studies, UV–vis spectroscopy, kinetics studies, and density functional theory calculations (DFT), we elucidate here that HOO•, which is released via the H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO•], serves as the real chain carrier for the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step, and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses on UV-driven oxidative reactions that involve aldehydes’ (or ketones) generation.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3