Changing on the Concentrations of Neonicotinoids in Rice and Drinking Water through Heat Treatment Process

Author:

Wei Ziyang1,Zhang Bo1,Li Xu1,Gao Yanxia1,He Yuan1,Xue Jingchuan2,Zhang Tao1ORCID

Affiliation:

1. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

2. Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Neonicotinoids (NEOs) have become the most widely used insecticides in the world since the mid-1990s. According to Chinese dietary habits, rice and water are usually heated before being consumed, but the information about the alteration through the heat treatment process is very limited. In this study, NEOs in rice samples were extracted by acetonitrile (ACN) and in tap water, samples were extracted through an HLB cartridge, then, a high-performance liquid chromatography system and a triple quadrupole mass spectrometry (HPLC-MS/MS) were applied for target chemical analysis. The parents of NEOs (p-NEOs) accounted for >99% of the total NEOs mass (∑NEOs) in both uncooked (median: 66.8 ng/g) and cooked (median: 41.4 ng/g) rice samples from Guangdong Province, China, while the metabolites of NEOs (m-NEOs) involved in this study accounted for less than 1%. We aimed to reveal the concentration changes of NEOs through heat treatment process, thus, several groups of rice and water samples from Guangdong were cooked and boiled, respectively. Significant (p < 0.05) reductions in acetamiprid, imidacloprid (IMI), thiacloprid, and thiamethoxam (THM) have been observed after the heat treatment of the rice samples. In water samples, the concentrations of THM and dinotefuran decreased significantly (p < 0.05) after the heat treatment. These results indicate the degradation of p-NEOs and m-NEOs during the heat treatment process. However, the concentrations of IMI increased significantly in tap water samples (p < 0.05) after heat treatment process, which might be caused by the potential IMI precursors in those industrial pesticide products. The concentrations of NEOs in rice and water can be shifted by the heat treatment process, so this process should be considered in relevant human exposure studies.

Funder

The Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3