Identification of Human Kinin-Forming Enzyme Inhibitors from Medicinal Herbs

Author:

Madkhali HassanORCID,Tarawneh AmerORCID,Ali ZulfiqarORCID,Le Hoang V.ORCID,Cutler Stephen J.,Khan Ikhlas A.,Shariat-Madar Zia

Abstract

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein–kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3