Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety

Author:

Makowska Anna,Sączewski Franciszek,Bednarski Patrick J.ORCID,Gdaniec MariaORCID,Balewski ŁukaszORCID,Warmbier MagdalenaORCID,Kornicka AnitaORCID

Abstract

A series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c were obtained by reacting of appropriate 2-iminocoumarin ligands L1a-h, L3a-b, and L5a-c with 3-fold molar excess of copper(II) chloride. The structure of these compounds was confirmed by IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction data (2f, 2g, 2h, and 6c). All the synthesized complexes were screened for their activity against five human cancer cell lines: DAN-G, A-427, LCLC-103H, SISO, and RT-4 by using a crystal violet microtiter plate assay and relationships between structure and in vitro cytotoxic activity are discussed. The coordination of 2-iminocoumarins with copper(II) ions resulted in complexes 2a-h, 4a-b, and 6a-c with significant inhibitory properties toward tested tumor cell lines with IC50 values ranging from 0.04 μM to 15.66 μM. In comparison to the free ligands L1a-h, L3a-b, and L5a-c, the newly prepared Cu(II) complexes often displayed increased activity. In the series of copper(II) complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h the most potent compound 2g contained a 4-phenylpiperazine moiety at position 6 of the 1,3,5-triazine ring and an electron-donating diethylamino group at position 7′ of the 2-iminocoumarin scaffold. Among the Cu(II) complexes of 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c the most active was benzoxazole-2-iminocoumarin 4b that also possessed a diethylamino group at position 7′ of the 2-iminocoumarin moiety. Moreover, compound 4b was found to be the most prominent agent and displayed the higher potency than cisplatin against tested cell lines.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3