Negative Dielectric Anisotropy Liquid Crystal with Improved Photo-Stability, Anti-Flicker, and Transmittance for 8K Display Applications

Author:

Chen Haiguang,Liu Youran,Chen Maoxian,Jiang Tianmeng,Yang ZhouORCID,Yang Huai

Abstract

Video systems such as 8K displays can provide a strong sense of presence and reality due to their extremely high resolution and wide field of view. However, high-resolution displays generally suffer from reduced transmittance, which requires the use of liquid crystals with high transmittance and high stability. In this study, negative dielectric anisotropy liquid crystal compositions with excellent photo-stability, anti-flicker capability, and high transmittance are developed, showing potential for 8K display applications. The stability of different types of negative dielectric anisotropy liquid crystal compounds is assessed under light, and the high photo-stability compounds are obtained. In addition, it is demonstrated that the flicker can be optimized from −17.6 to −47.0 by removing the compounds with a higher ion content and a larger deformation number and adding the compounds with a smaller deformation number in the negative dielectric anisotropy liquid crystal compositions. Combining with the evaluation of the factors affecting the response time, the negative dielectric anisotropy liquid crystal mixed H is designed with improved stability and flicker; thus, the response time was decreased to 9.5 ms, and the optical transmittance was 5.5% higher than that of MAT-09-1284 (for normal) and 3.1% higher than that of BY19-J01A (for 4K).

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference46 articles.

1. Development of a novel wide-gamut 8 K 120 Hz LCD complying with ITU-R BT;Takeshi;SID 2015 Digest,2015

2. Development of super hi-vision 8 K × 4 K direct-view LCD for next generation TV;Takeshi;SID 2012 Digest,2012

3. 58‐2: Low power and Narrow border 8K Notebook Display with Smart View

4. Comparing visual realness between high resolution images and real objects;Kenichiro;ITE Tech. Rep.,2011

5. 4-side Micro Border 8 k4 k LCD with Oxide-TFT Gate Driver Embedded Array;Ma;SID 2020 Digest,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3