Formation of Mo5Si3/Mo3Si–MgAl2O4 Composites via Self-Propagating High-Temperature Synthesis

Author:

Yeh Chun-Liang,Chen Yin-Chien

Abstract

In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). The SHS process combined intermetallic combustion between Mo and Si with metallothermic reduction of MoO3 by Al in the presence of MgO. Experimental evidence showed that combustion velocity and temperature decreased with increasing molar content of Mo5Si3 and Mo3Si, and therefore, the flammability limit determined for the reaction at Mo5Si3 or Mo3Si/MgAl2O4 = 2.0. Based upon combustion wave kinetics, the activation energies, Ea = 68.8 and 63.8 kJ/mol, were deduced for the solid-state SHS reactions producing Mo5Si3– and Mo3Si–MgAl2O4 composites, respectively. Phase conversion was almost complete after combustion, with the exception of trivial unreacted Mo existing in both composites and a minor amount of Mo3Si in the Mo5Si3–MgAl2O4 composite. Both composites display a dense morphology formed by connecting MgAl2O4 crystals, within which micro-sized molybdenum silicide grains were embedded. For equimolar Mo5Si3– and Mo3Si–MgAl2O4 composites, the hardness and fracture toughness are 14.6 GPa and 6.28 MPa m1/2, and 13.9 GPa and 5.98 MPa m1/2, respectively.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3