Dual-Responsive Supramolecular Chiral Assemblies from Amphiphilic Dendronized Tetraphenylethylenes

Author:

Zhang Jianan1ORCID,Lu Xueting1ORCID,Li Wen1ORCID,Zhang Afang1ORCID

Affiliation:

1. International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China

Abstract

Supramolecular assembly of amphiphilic molecules in aqueous solutions to form stimuli-responsive entities is attractive for developing intelligent supramolecular materials for bioapplications. Here we report on the supramolecular chiral assembly of amphiphilic dendronized tetraphenylethylenes (TPEs) in aqueous solutions. Hydrophobic TPE moieties were connected to the hydrophilic three-fold dendritic oligoethylene glycols (OEGs) through a tripeptide proline–hydroxyproline–glycol (POG) to afford the characteristic topological structural effects of dendritic OEGs and the peptide linker. Both ethoxyl- and methoxyl-terminated dendritic OEGs were used to modulate the overall hydrophilicity of the dendronized TPEs. Their supramolecular aggregates exhibited thermoresponsive behavior that originated from the dehydration and collapse of the dendritic OEGs, and their cloud point temperatures (Tcps) were tailored by solution pH conditions. Furthermore, aggregation-induced fluorescent emission (AIE) from TPE moieties was used as an indicator to follow the assembly, which was reversibly tuned by temperature variation at different pH conditions. Supramolecular assemblies from these dendronized amphiphiles exhibited enhanced supramolecular chirality, which was dominated mainly by the interaction balance between TPE with dendritic OEG and TPE with POG moieties and was modulated through different solvation by changing solution temperature or pH conditions. More interestingly, ethoxyl-terminated dendritic OEG provided a much stronger shielding effect than its methoxyl-terminated counterpart to prevent amino groups within the peptide from protonation, even in strong acidic conditions, resulting in different responsive behavior to the solution temperature and pH conditions for these supramolecular aggregates.

Funder

National Natural Science Foundation of China

Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3