The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation
-
Published:2023-01-03
Issue:1
Volume:28
Page:413
-
ISSN:1420-3049
-
Container-title:Molecules
-
language:en
-
Short-container-title:Molecules
Author:
Du Juan,Wang Song,Zhang Xinyue,Liu Chang,Zhang Yurou,Zhang Hao
Abstract
The overexpression of p21-activated kinase 4 (PAK4) is associated with a variety of cancers. In this paper, the binding modes and inhibitory mechanisms of four 7H-pyrrolo[2,3-d]pyrimidine competitive inhibitors of PAK4 were investigated at the molecular level, mainly using molecular dynamics simulations and binding free energy calculations. The results show that the inhibitors had strong interactions with the hinge region, the β-sheets, and the residues with charged side chains around the 4-substituent. The terminal amino group of the inhibitor 5n was different from the other three, which could cause the enhancement of hydrogen bonds or electrostatic interactions formed with the surrounding residues. Thus, inhibitor 5n had the strongest inhibition capacity. The different halogen atoms on the 2-substituents of the inhibitors 5h, 5g, and 5e caused differences in the positions of the 2-benzene rings and affected the interactions of the hinge region. It also affected to some extent the orientations of the 4-imino groups and consequently their affinities for the surrounding charged residues. The combined results lead to the weakest inhibitory capacity of inhibitor 5e.
Funder
Jilin Provincial Science and Technology Development Plan
Jilin Province Science and Technology Association, Academic Projects
Jilin Provincial Higher Education Research Project
Jilin Provincial Social Science Foundation
Postgraduate Teaching Reform Project at Jilin University
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献