Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent

Author:

López-Ahumada Eunice,Salazar-Hernández Mercedes,Talavera-López AlfonsoORCID,Solis-Marcial O. J.,Hernández-Soto Rosa,Ruelas-Leyva Jose P.ORCID,Hernández José AlfredoORCID

Abstract

The discharge of large amounts of effluents contaminated with gentian violet (GV) and phenol red (PR) threatens aquatic flora and fauna as well as human health, which is why these effluents must be treated before being discarded. This study seeks the removal of dyes, using water lily (Eichhornia crassipes) as an adsorbent with different pretreatments. PR and GV were analyzed by a UV-visible spectrophotometer. Equilibrium experimental data showed that Freundlich is the best model to fit PR and SIPS for GV, showing that the adsorption process for both dyes was heterogeneous, favorable, chemical (for GV), and physical (for PR). The thermodynamic analysis for the adsorption process of both dyes depends directly on the increase in temperature and is carried out spontaneously. The Pseudo first Order (PFO) kinetic model for GV and PR is the best fit for the dyes having an adsorption capacity of 91 and 198 mg/g, respectively. The characterization of the materials demonstrated significant changes in the bands of lignin, cellulose, and hemicellulose, which indicates that the functional groups could participate in the capture of the dyes together with the electrostatic forces of the medium, from which it be concluded that the adsorption process is carried out by several mechanisms.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3