Abstract
TiO2 nanotubes (TiO2NTs) are beneficial for photogenerated electron separation in photocatalysis. In order to improve the utilization rate of TiO2NTs in the visible light region, an effective method is to use Aun cluster deposition-modified TiO2NTs. It is of great significance to investigate the mechanism of Aun clusters supported on TiO2NTs to strengthen its visible-light response. In this work, the structures, electronic properties, Mulliken atomic charge, density of states, band structure, and deformation density of Aun (n = 1, 8, 13) clusters supported on TiO2NTs were investigated by DMOL3. Based on published research results, the most stable adsorption configurations of Aun (n = 1, 8, 13) clusters supported with TiO2NTs were obtained. The adsorption energy increased as the number of Au adatoms increased linearly. The Aun clusters supported on TiO2NTs carry a negative charge. The band gaps of the three most stable structures of each adsorption system decreased compared to TiO2NTs; the valence top and the conduction bottom of the Fermi level come mainly from the contribution of 5d and 6s-Au. The electronic properties of the 5d and 6s impurity orbitals cause valence widening and band gap narrowing.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献