Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature

Author:

Zhao Jie1,Wang Bingquan2,Wang Rui1ORCID,Kozhevnikov Ivan V.3ORCID,Vladimir Korchak4

Affiliation:

1. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China

2. School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

3. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK

4. N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia

Abstract

Amphiphilic hybrid catalysts were prepared by modifying [SMo12O40]2− with tetrabutylammonium bromide (TBAB), 1-butyl-3-methylimidazole bromide (BMIMBr) and octadecyl trimethyl ammonium bromide (ODAB), respectively. The prepared catalysts were characterized by IR, XRD, SEM, TG and XPS. The desulfurization performance of the catalysts was investigated in model oil and actual diesel using hydrogen peroxide (H2O2) as an oxidant and acetonitrile as an extractant. All catalysts exhibited favorable activity for removing sulfur compounds at room temperature. Dibenzothiophene (DBT) can be nearly completely removed using SMo12O402−-organic catalysts within a short reaction time. For different sulfur compounds, the [TBA]2SMo12O40 catalyst showed a better removal effect than the [BMIM]2SMo12O40 and [ODA]2SMo12O40 catalyst. The [TBA]2SMo12O40 dissolved in extraction solvent could be reused up to five times in an oxidative desulfurization (ODS) cycle with no significant loss of activity. The [BMIM]2SMo12O40 performed as a heterogeneous catalyst able to be recycled from the ODS system and maintained excellent catalytic activity. The catalysts showed a positive desulfurization effect in real diesel treatment. Finally, we described the ODS desulfurization mechanism of DBT using SMo12O402−-organic hybrid catalysts. The amphiphilic hybrid catalyst cation captures DBT, while SMo12O402− reacts with the oxidant H2O2 to produce peroxy-active species. DBT can be oxidized to its sulfone by the action of peroxy-active species to achieve ODS desulfurization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

PetroChina Innovation Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3