Blood Clot Phenotyping by Rheometry: Platelets and Fibrinogen Chemistry Affect Stress-Softening and -Stiffening at Large Oscillation Amplitude

Author:

Windberger UrsulaORCID,Läuger JörgORCID

Abstract

(1) Background: Together with treatment protocols, viscoelastic tests are widely used for patient care. Measuring at broader ranges of deformation than currently done will add information on a clot’s mechanical phenotype because fibrin networks follow different stretching regimes, and blood flow compels clots into a dynamic non-linear response. (2) Methods: To characterize the influence of platelets on the network level, a stress amplitude sweep test (LAOStress) was applied to clots from native plasma with five platelet concentrations. Five species were used to validate the protocol (human, cow, pig, rat, horse). By Lissajous plots the oscillation cycle for each stress level was analyzed. (3) Results: Cyclic stress loading generates a characteristic strain response that scales with the platelet quantity at low stress, and that is independent from the platelet count at high shear stress. This general behavior is valid in the animal models except cow. Here, the specific fibrinogen chemistry induces a stiffer network and a variant high stress response. (4) Conclusions: The protocol provides several thresholds to connect the softening and stiffening behavior of clots with the applied shear stress. This points to the reversible part of deformation, and thus opens a new route to describe a blood clot’s phenotype.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3