Design of a Novel Sericite–Phosphoric Acid Framework for Enhancement of Pb(II) Adsorption

Author:

Kim Han-Soo1ORCID,Choi Hee-Jeong1ORCID

Affiliation:

1. Department of Biomedical Sciences, Catholic Kwandong University, Beomil-ro 579 beon-gil, Gangneung-si 25601, Republic of Korea

Abstract

In this study, phosphoric acid was used to attach anions to the weak interlayer structure of sericite, one of the clay minerals composed of a tetrahedral structure of silicate, to increase the adsorption capacity of cations. Natural sericite beads (NSB) and activated sericite beads with phosphoric acid (PSB) were prepared as beads in order to increase reusability and facilitate the separation of adsorbates and adsorbents. Using this, lead (Pb(II)) removal efficiency from an aqueous solution was comparatively analyzed. The pHpzc was 6.43 in NSB but lowered to 3.96 in PSB, confirming that more acidic functional groups were attached to the PSB surface. According to FT-IR analysis, P=O, P-O-C, P=OOH and P-O-P bonds appeared on the surface of the PSB adsorbent, and the peaks of carboxyl groups and OH-groups were large and broad. The maximum adsorption capacity of Langmuir was 52.08 mg/g for NSB and 163.93 mg/g for PSB. The adsorption process was close to physical adsorption for NSB and chemical adsorption for PSB, and both adsorbents were endothermic reactions in nature in that the higher the temperature, the higher the adsorption efficiency. The adsorption mechanism of Pb(II) to PSB was achieved by ion exchange, electrostatic interaction, hydrogen bonding, and complexation. The adsorption of Pb(II) using PSB was not significantly affected by the adsorption of competing ions and showed a high adsorption efficiency of 94% in reuse up to 6 times. This confirms the favorable feasibility of removing Pb(II) from industrial wastewater using PSB.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3