MIL-161 Metal–Organic Framework for Efficient Au(III) Recovery from Secondary Resources: Performance, Mechanism, and DFT Calculations

Author:

Hu Guangyuan1,Wang Zhiwei1,Zhang Weiye1ORCID,He Hongxing1ORCID,Zhang Yi1,Deng Xiujun1ORCID,Li Weili1

Affiliation:

1. Department of Chemical Science and Technology, Kunming University, Kunming 650214, China

Abstract

The recovery of precious metals from secondary resources is significant economically and environmentally. However, their separation is still challenging because they often occur in complex metal ion mixtures. The poor selectivity of adsorbents for gold in complicated solutions prevents further application of adsorption technology. In this study, a Zr-based MOF adsorbent, MIL-161, was synthesized using s-tetrazine dicarboxylic acid (H2STz) as an organic ligand. MIL-161 demonstrated a high adsorption capacity of up to 446.49 mg/g and outstanding selectivity for gold(III) in a simulated electronic waste solution as a result of the presence of sulfur- and nitrogen-containing groups. In addition, the MIL-161 adsorbents were characterized using Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TG), Brunner–Emment–Teller (BET), and X-ray photoelectron spectroscopy (XPS). Additionally, the adsorption kinetics, isotherms, and thermodynamics of the MOF adsorbents were also thoroughly examined. More importantly, the experimental results and DFT calculations indicate that chelation and electrostatic interactions are the main adsorption mechanisms.

Funder

Yunnan Provincial Undergraduate Universities

Kunming University

Open Project of Yunnan Precious Metals Laboratory Co., Ltd.

Yunnan Provincial Department of Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3