Sodium Silicate/Urea/Melamine Ternary Synergistic Waterborne Acrylic Acid Flame-Retardant Coating and Its Flame-Retardant Mechanism

Author:

Shao Yuran12ORCID,Wang Yuting12,Yang Fei12,Du Chungui12ORCID,Zhu Jiawei12,Ran Ying12,Bao Qichao12,Shan Yingying2,Zhang Weigang12

Affiliation:

1. Bamboo Industry Institute, Zhejiang A & F University, Hangzhou 311300, China

2. College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China

Abstract

Waterborne acrylic coatings, the largest market share of predominant environmentally friendly coatings, face limitations in their extensive application due to their flammability. The flame-retardant properties of the coatings could be significantly enhanced by incorporate inorganic flame retardants. However, inorganic flame retardants tend to aggregate and unevenly disperse in waterborne acrylic coatings, causing a substantial decrease in flame retardancy. In this work, sodium silicate was utilized as a flame retardant, with urea and melamine serving as modifiers and synergistic agents. This combination resulted in the preparation of a sodium silicate/urea/melamine ternary synergistic waterborne acrylic flame-retardant coating. This coating was applied to the surface of poplar veneer to create flame-retardant poplar veneer. Subsequently, various instruments, including a scanning electron microscope (SEM), a limiting oxygen index meter (LOI), a thermogravimetric analyzer (TG), and a cone calorimeter (CONE), were employed to investigate the relevant properties and mechanisms of both the flame-retardant coating and poplar veneer. The results demonstrated that the sodium silicate/urea/melamine ternary synergistic flame retardant did not exhibit aggregation and could be uniformly dispersed in waterborne acrylic coatings. The physical and mechanical properties of the ternary synergistic flame-retardant poplar veneer coating were satisfactory. Melamine and urea, acting as modifiers, not only greatly enhanced the dispersibility of sodium silicate in waterborne acrylic coatings, but also assisted in the formation of a silicon-containing char layer through the generation of nitrogen, achieving ternary synergistic flame retardancy. In conclusion, this work explores a novel method to efficiently and uniformly disperse inorganic flame retardants in organic coatings. It significantly improves the dispersibility and uniformity of inorganic flame retardants in organic polymers, thereby substantially enhancing the flame-retardant performance of coatings. This work provides a theoretical basis for the research and application of new flame-retardant coatings in the field of chemistry and materials.

Funder

Zhejiang Provincial Natural Science Foundation

Zhejiang Provincial Key Research and Development Program

Publisher

MDPI AG

Reference48 articles.

1. Research Status and Application of Waterborne Coatings in Aeronautical Field;Xie;Mod. Paint. Finish.,2019

2. Gu, J.Y. (2012). Adhesive and Paint, China Forestry Publishing House.

3. The Global Waterborne Coatings Market Keeps Growing;Bohn;China Coat.,2021

4. Research Progress on Application Technology of Waterborne Acrylic Resin and Coating;Zhang;Jiangxi Sci.,2018

5. Javadi, A., Cobaj, A., and Soucek, M.D. (2020). Handbook of Waterborne Coatings, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3