Proteomic Analysis of Protective Effects of Epimedium Flavonoids against Ethanol-Induced Toxicity in Retinoic Acid-Treated SH-SY5Y Cells

Author:

Yang Xiaohua,Zhang Huafeng,Li Lu,Zhou Xuexue,Liu Yichao,Lai Jianghua

Abstract

Alcohol (ethanol) is one of the most common addictive psychoactive substances in the world, and alcoholism may result in harmful effects on human health, especially on the nervous system. Flavonoids are regarded as the main active constituent in Epimedium, which has been used to cure some nervous system diseases such as amnesia for over 1000 years. Here, the protective effects of Epimedium flavonoids against ethanol-induced toxicity in retinoic acid (RA)-treated SH-SY5Y cells were investigated. Their mechanism was explored by a label-free proteomic approach combined with bioinformatic analysis for the first time. The results showed that ethanol treatment decreased cell viability by 18%, whereas the viability increased significantly after intervention with Epimedium flavonoids (p < 0.01). According to proteomic and bioinformatic analyses, hundreds of differentially expressed proteins (DEPs) were identified and classified as biological process (GO_BP), cellular component (GO_CC) and molecular function (GO_MF). Among them, GO_MF of DEPs, especially molecular function relevant to G proteins, greatly changed in SH-SY5Y cells pretreated by Epimedium flavonoids. In the alcoholism pathway, the expression of the Gi protein was up-regulated under the influence of ethanol, whereas Epimedium flavonoids could reverse the expression profile, both of which were validated by Western blot assay. In conclusion, Gi protein seemed to be an important factor in the alcoholism pathway to suppress the ethanol-induced toxicity of SH-SY5Y cells. These findings suggest a protective potential of Epimedium flavonoids against ethanol-induced toxicity to neurons via the regulation of Gi protein function.

Funder

Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference41 articles.

1. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells

2. Alcohol dependence mediated by monoamine neurotransmitters in the central nervous system;Yang;Yi Chuan Hereditas,2014

3. Global Status Report on Alcohol and Health, Geneva http://www.who.int/substance_abuse/publications/global_alcohol_report/en/

4. Important Flavonoids and Their Role as a Therapeutic Agent

5. The effects of antidepressant drug on ethanol-induced cell death;Johnson;Drug Discov. Ther.,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3