Parameter Optimization of Ultrasonic–Microwave Synergistic Extraction of Taxanes from Taxus cuspidata Needles

Author:

Zhao Zirui1,Zhang Yajing1,Li Wenlong1,Tang Yuanhu1,Wang Shujie1ORCID

Affiliation:

1. College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China

Abstract

Taxanes are the best-known compounds in Taxus cuspidata owing to their strong anticancer effects. However, the traditional taxanes extraction method is the solid–liquid extraction method, which is limited by a large energy consumption and low yield. Therefore, it is urgent to find an efficient method for taxanes extraction. The ultrasonic microwave synergistic extraction (UME) method integrates the cavitation effect of ultrasound and the intensifying heat transfer (ionic conduction and dipole rotation of molecules) effect of microwave to accelerate the release of intracellular compounds and is used in active ingredient extractions. This study aimed to evaluate the performance of UME in extracting taxanes from T. cuspidata needles (dichloromethane-ethanol as extractant). A single-factor experiment, Plackett–Burman design, and the response surface method showed that the optimal UME parameters for taxanes extraction were an ultrasonic power of 300 W, a microwave power of 215 W, and 130 sieve meshes. Under these conditions, the taxanes yield was 570.32 μg/g, which increased by 13.41% and 41.63% compared with the ultrasound (US) and microwave (MW) treatments, respectively. The reasons for the differences in the taxanes yield were revealed by comparing the physicochemical properties of T. cuspidata residues after the UME, US, and MW treatments. The cell structures were significantly damaged after the UME treatment, and numerous tiny holes were observed on the surface. The absorption peaks of cellulose, hemicellulose, and lignin increased significantly in intensity, and the lowest peak temperature (307.40 °C), with a melting enthalpy of −5.19 J/g, was found after the UME treatment compared with the US and MW treatments. These results demonstrate that UME is an effective method (570.32 μg/g) to extract taxanes from T. cuspidata needles by destroying cellular structures.

Funder

Jilin Province Science and Technology Development Key Program

the cross-regional cooperation program of research institutes

the development plan project during “The 13th Five Year Plan” for Nation Science and Technology in rural areas

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3