Formation and In Vitro Simulated Digestion Study of Gelatinized Korean Pine Seed Oil Encapsulated with Calcified Wax

Author:

Wang Peng1ORCID,Wang Honglu1ORCID,Hou Yanli1ORCID,Wang Jingyi1ORCID,Fan Yue1ORCID,Zhang Na2ORCID,Guo Qingqi1ORCID

Affiliation:

1. College of Life Science, Northeast Forestry University, Harbin 150040, China

2. College of Food Engineering, Harbin University of Commerce, Harbin 150028, China

Abstract

Natural waxes have demonstrated exceptional potential as oil gels for saturated and trans fatty acids, but their application has been limited by issues such as temperature sensitivity, lack of stability and durability, and compatibility. In this study, three types of wax (Beeswax (BW), Rice bran wax (RBW), and Carnauba wax (CW)) were combined with calcium hydroxide to produce calcified wax. The calcified Korean pine seed oil gel obtained by heating and stirring with Korean pine seed oil is responsive to temperature and has environmental adaptability. The effects of critical gel concentration, temperature regulation, texture properties, microstructure, oil-holding capacity, and FT-IR on the quality parameters of oil gel were investigated. Additionally, an in vitro digestion model was developed to comprehend the decomposition rate of fat during gel structure digestion and transportation. The results demonstrated a close correlation between the critical gelation concentration and calcium ion content. Furthermore, after calcification, the hardness followed the order BW > CW > RBW. Moreover, there was an approximate 10 °C increase in wax melting point. Conversely, BW:Ca exhibited the lowest oil leakage. The microstructures revealed that the oil gels formed post-wax calcification exhibited similar fractal dimension (Db) values (<7 μm), and the intermolecular forces were characterized by van der Waals forces, which were consistent with those observed in the non-calcified group. In conjunction with the vitro digestion simulation, our findings demonstrated that RBW and CW oil gels gradually released 20%, 35%, and 35% of free fatty acids (FFA) within the initial 30 min of intestinal digestion. Importantly, the FFA release rate was significantly attenuated, thereby providing a foundation for developing wax-based gel processed foods that facilitate gentle energy release benefits for healthy weight management.

Funder

Heilongjiang Provincial Key R&D Program Guidance Category Project

National Natural Science Foundation of China

Regional Innovation Project of Heilongjiang Provincial Department of Education

Special Project for Centralized Guidance of Local Science and Technology Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3