Insights into the Synergistic Effect and Inhibition Mechanism of Composite Conditioner on Sulfur-Containing Gases during Sewage Sludge Pyrolysis

Author:

Cheng Shan1,Chen Lianghui1,Wang Shaoshuo1,Yao Kehui1,Tian Hong1

Affiliation:

1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Sewage sludge odorous gas release is a key barrier to resource utilization, and conditioners can mitigate the release of sulfur-containing gases. The gas release characteristics and sulfur compound distribution in pyrolysis products under both single and composite conditioning strategies of CaO, Fe2O3, and FeCl3 were investigated. This study focused on the inhibition mechanisms of these conditioners on sulfur-containing gas emissions and compared the theoretical and experimental sulfur content in the products to evaluate the potential synergistic effects of the composite conditioners. The findings indicated that at 650 °C, CaO, Fe2O3, and FeCl3 inhibited H2S release by 35.8%, 23.2%, and 9.1%, respectively. Notably, the composite of CaO with FeCl3 at temperatures ranging from 350 to 450 °C and the combination of Fe2O3 with FeCl3 at 650 °C were found to exert synergistic suppression on H2S emissions. The strongly alkaline CaO inhibited the metathesis reaction between HCl, a decomposition product of FeCl3, and the sulfur-containing compounds within the sewage sludge, thereby exerting a synergistic suppression on the emission of H2S. Conversely, at temperatures exceeding 550 °C, the formation of Ca-Fe compounds, such as FeCa2O4, appeared to diminish the sulfur-fixing capacity of the conditioners, resulting in increased H2S emissions. For instance, the combination of CaO and FeCl3 at 450 °C was found to synergistically reduce H2S emissions by 56.3%, while the combination of CaO and Fe2O3 at 650 °C synergistically enhances the release of H2S by 23.6%. The insights gained from this study are instrumental in optimizing the pyrolysis of sewage sludge, aiming to minimize its environmental footprint and enhance the efficiency of resource recovery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Education Department of Hunan Province

Changsha University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3