Abstract
The recognition of specific DNA sequences in processes such as transcription is associated with a cooperative binding of proteins. Some transcription regulation mechanisms involve additional proteins that can influence the binding cooperativity by acting as corepressors or coactivators. In a conditional cooperativity mechanism, the same protein can induce binding cooperativity at one concentration and inhibit it at another. Here, we use calorimetric (ITC) and spectroscopic (UV, CD) experiments to show that such conditional cooperativity can also be achieved by the small DNA-directed oligopeptides distamycin and netropsin. Using a global thermodynamic analysis of the observed binding and (un)folding processes, we calculate the phase diagrams for this system, which show that distamycin binding cooperativity is more pronounced at lower temperatures and can be first induced and then reduced by increasing the netropsin or/and Na+ ion concentration. A molecular interpretation of this phenomenon is suggested.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献