Abstract
In this article, we report the total synthesis of 6-deoxydihydrokalafungin (DDHK), a key biosynthetic intermediate of a dimeric benzoisochromanequinone antibiotic, actinorhodin (ACT), and its epimer, epi-DDHK. Tricyclic hemiacetal with 3-siloxyethyl group was subjected to Et3SiH reduction to establish the 1,3-cis stereochemistry in the benzoisochromane, and a subsequent oxidation/deprotection sequence then afforded epi-DDHK. A bicyclic acetal was subjected to AlH3 reduction to deliver the desired 1,3-trans isomer in an approximately 3:1 ratio, which was subjected to a similar sequence to that used for the 1,3-cis isomer that successfully afforded DDHK. A semisynthetic approach from (S)-DNPA, an isolable biosynthetic precursor of ACT, was also examined to afford DDHK and its epimer, which are identical to the synthetic products.
Funder
Japan Society for the Promotion of Science
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献