Advancing Antimony(III) Adsorption: Impact of Varied Manganese Oxide Modifications on Iron–Graphene Oxide–Chitosan Composites

Author:

Mo Huinan1,Shan Huimei12ORCID,Xu Yuqiao12,Liao Haimin12,Peng Sanxi3

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China

3. College of Earth Science, Guilin University of Technology, Guilin 541004, China

Abstract

Antimony (Sb) is one of the most concerning toxic metals globally, making the study of methods for efficiently removing Sb(III) from water increasingly urgent. This study uses graphene oxide and chitosan as the matrix (GOCS), modifying them with FeCl2 and four MnOx to form iron–manganese oxide (FM/GC) at a Fe/Mn molar ratio of 4:1. FM/GC quaternary composite microspheres are prepared, showing that FM/GC obtained from different MnOx exhibits significant differences in the ability to remove Sb(III) from neutral solutions. The order of Sb(III) removal effectiveness is MnSO4 > KMnO4 > MnCl2 > MnO2. The composite microspheres obtained by modifying GOCS with FeCl2 and MnSO4 are selected for further batch experiments and characterization tests to analyze the factors and mechanisms influencing Sb(III) removal. The results show that the adsorption capacity of Sb(III) decreases with increasing pH and solid–liquid ratio, and gradually increases with the initial concentration and reaction time. The Langmuir model fitting indicates that the maximum adsorption capacity of Sb(III) is 178.89 mg/g. The adsorption mechanism involves the oxidation of the Mn-O group, which converts Sb(III) in water into Sb(V). This is followed by ligand exchange and complex formation with O-H in FeO(OH) groups, and further interactions with C-OH, C-O, O-H, and other functional groups in GOCS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Guilin University of Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3