Computational Exploration of Dirhodium Complex-Catalyzed Selective Intermolecular Amination of Tertiary vs. Benzylic C−H Bonds

Author:

Su Xing-Xing1,Chen Xia-He1,Ding De-Bo1,She Yuan-Bin1,Yang Yun-Fang1ORCID

Affiliation:

1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

The mechanism and origins of site-selectivity of Rh2(S-tfpttl)4-catalyzed C(sp3)–H bond aminations were studied using density functional theory (DFT) calculations. The synergistic combination of the dirhodium complex Rh2(S-tfpttl)4 with tert-butylphenol sulfamate TBPhsNH2 composes a pocket that can access both tertiary and benzylic C–H bonds. The nonactivated tertiary C–H bond was selectively aminated in the presence of an electronically activated benzylic C–H bond. Both singlet and triplet energy surfaces were investigated in this study. The computational results suggest that the triplet stepwise pathway is more favorable than the singlet concerted pathway. In the hydrogen atom abstraction by Rh–nitrene species, which is the rate- and site-selectivity-determining step, there is an attractive π–π stacking interaction between the phenyl group of the substrate and the phthalimido group of the ligand in the tertiary C–H activation transition structure. By contrast, such attractive interaction is absent in the benzylic C–H amination transition structure. Therefore, the DFT computational results clearly demonstrate how the synergistic combination of the dirhodium complex with sulfamate overrides the intrinsic preference for benzylic C–H amination to achieve the amination of the nonactivated tertiary C–H bond.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3