Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review

Author:

Beleño Acosta Bryan1ORCID,Advincula Rigoberto C.23,Grande-Tovar Carlos David1ORCID

Affiliation:

1. Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia

2. Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA

3. Center for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract

Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world’s leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the “preferred reporting items for systematic reviews and meta-analyses” data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.

Funder

University of Tennessee

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3