Generative Topographic Mapping of the Docking Conformational Space

Author:

Horvath ,Marcou ,Varnek

Abstract

Following previous efforts to render the Conformational Space (CS) of flexible compounds by Generative Topographic Mapping (GTM), this polyvalent mapping technique is here adapted to the docking problem. Contact fingerprints (CF) characterize ligands from the perspective of the binding site by monitoring protein atoms that are “touched” by those of the ligand. A “Contact” (CF) map was built by GTM-driven dimensionality reduction of the CF vector space. Alternatively, a “Hybrid” (Hy) map used a composite descriptor of CFs concatenated with ligand fragment descriptors. These maps indirectly represent the active site and integrate the binding information of multiple ligands. The concept is illustrated by a docking study into the ATP-binding site of CDK2, using the S4MPLE program to generate thousands of poses for each ligand. Both maps were challenged to (1) Discriminate native from non-native ligand poses, e.g., create RMSD-landscapes “colored” by the conformer ensemble of ligands of known binding modes in order to highlight “native” map zones (poses with RMSD to PDB structures < 2Å). Then, projection of poses of other ligands on such landscapes might serve to predict those falling in native zones as being well-docked. (2) Distinguish ligands–characterized by their ensemble of conformers–by their potency, e.g., testing the hypotheses whether zones privileged by potent binders are clearly separated from the ones preferred by decoys on the maps. Hybrid maps were better in both challenges and outperformed the classical energy and individual contact satisfaction scores in discriminating ligands by potency. Moreover, the intuitive visualization and analysis of docking CS may, as already mentioned, have several applications–from highlighting of key contacts to monitoring docking calculation convergence.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3