Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation

Author:

Yaghmur AnanORCID,Tran Boi Vi,Moghimi Seyed MoeinORCID

Abstract

Owing to their unique structural features, non-lamellar liquid crystalline nanoparticles comprising cubosomes and hexosomes are attracting increasing attention as versatile investigative drug carriers. Background: Depending on their physiochemical characteristics, drug molecules on entrapment can modulate and reorganize structural features of cubosomes and hexosomes. Therefore, it is important to assess the effect of guest molecules on broader biophysical characteristics of non-lamellar liquid crystalline nanoparticles, since drug-induced architectural, morphological, and size modifications can affect the biological performance of cubosomes and hexosomes. Methods: We report on alterations in morphological, structural, and size characteristics of nanodispersions composed from binary mixtures of glycerol monooleate and vitamin E on thymoquinone (a molecule with wide therapeutic potentials) loading. Results: Thymoquinone loading was associated with a slight increase in the mean hydrodynamic nanoparticle size and led to structural transitions from an internal biphasic feature of coexisting inverse cubic Fd3m and hexagonal (H2) phases to an internal inverse cubic Fd3m phase (micellar cubosomes) or an internal inverse micellar (L2) phase (emulsified microemulsions, EMEs). We further report on the presence of “flower-like” vesicular populations in both native and drug-loaded nanodispersions. Conclusions: These nanodispersions have the potential to accommodate thymoquinone and may be considered as promising platforms for the development of thymoquinone nanomedicines.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3