Graphene Oxide Enhanced Cisplatin Cytotoxic Effect in Glioblastoma and Cervical Cancer

Author:

Kregielewski Kacper1ORCID,Fraczek Wiktoria2ORCID,Grodzik Marta2ORCID

Affiliation:

1. Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

2. Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Graphene oxide (GO) is an oxidized derivative of graphene. So far, GO has mostly been studied as a drug delivery method rather than a standalone drug for treating cancers like glioblastoma or cervical cancer. However, we propose a promising new approach—using GO as a sensitizer for cisplatin chemotherapy. Here, we analyze the effects of triple GO pretreatment, followed by cisplatin treatment, on cancerous cell lines U87 and HeLa, as well as the noncancerous cell line HS-5, through morphology analysis, viability assay, flow cytometry, and LDH release assay. The viability assay results showed that GO treatment made U87 and HeLa cells more responsive to cisplatin, leading to a significant reduction in cell viability to 40% and 72%, respectively, without affecting HS-5 cells viability, while the Annexin V/Propidium iodine assay showed that GO pretreatment did not cause a change in live cells in all three examined cell lines, while GO-pretreated HeLa cells treated with cisplatin showed significant decrease around two times compared to cells treated with cisplatin standalone. The U87 cell line showed a significant increase in LDH release, approximately 2.5 times higher than non-GO-pretreated cells. However, GO pretreatment did not result in LDH release in noncancerous HS-5 cells. It appears that this phenomenon underlays GO’s ability to puncture the cell membrane of cancerous cells depending on its surface properties without harming noncancerous cells.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3