Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation

Author:

Zvarych ViktorORCID,Stasevych MarynaORCID,Novikov Volodymyr,Rusanov Eduard,Vovk Mykhailo,Szweda PiotrORCID,Grecka KatarzynaORCID,Milewski Slawomir

Abstract

The development and spread of resistance of human pathogenic bacteria to the action of commonly used antibacterial drugs is one of the key problems in modern medicine. One of the especially dangerous and easily developing antibiotic resistant bacterial species is Staphylococcus aureus. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones 22–38 have been developed as novel effective antistaphylococcal agents. These compounds have been obtained by sequential conversion of 1-amino-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (1) and 1-amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (2) into the corresponding amides 5–21, followed by subsequent endo-cyclization under the influence of sodium nitrite in acetic acid. Evaluation of the antimicrobial activity of the synthesized compounds against selected species of Gram-positive and Gram-negative bacteria as well as pathogenic yeasts of the Candida genus has been carried out by the serial dilution method. It has been established that anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones exhibit selective antibacterial activity against Gram-positive bacteria. Eight, six and seven, out of seventeen compounds tested, effectively inhibited the growth of S. aureus ATCC 25923, S. aureus ATCC 29213 and S. epidermidis ATCC12228, respectively, at a concentration equal to 1 µg/mL or lower. The high antistaphylococcal potential of the most active compounds has been also confirmed against clinical isolates of S. aureus, including the MRSA strains. However, bacteria of the Staphylococcus genus have demonstrated apparent resistance to the novel compounds when grown as a biofilm. None of the four selected compounds 3234 and 36 at a concentration of 64 µg/mL (128 or 256 × MIC—against planktonic cells) has caused any decrease in the metabolic activity of the staphylococcal cells forming the biofilm. The kinetic time–kill assay revealed some important differences in the activity of these substances. Compound 33 is bacteriostatic, while the other three demonstrate bactericidal activity.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3