Abstract
There is interest in peptide drug design, especially for targeting intracellular protein–protein interactions. Therefore, the experimental validation of a computational platform for enabling peptide drug design is of interest. Here, we describe our peptide drug design platform (CMDInventus) and demonstrate its use in modeling and predicting the structural and binding aspects of diverse peptides that interact with oncology targets MDM2/MDMX in comparison to both retrospective (pre-prediction) and prospective (post-prediction) data. In the retrospective study, CMDInventus modules (CMDpeptide, CMDboltzmann, CMDescore and CMDyscore) were used to accurately reproduce structural and binding data across multiple MDM2/MDMX data sets. In the prospective study, CMDescore, CMDyscore and CMDboltzmann were used to accurately predict binding affinities for an Ala-scan of the stapled α-helical peptide ATSP-7041. Remarkably, CMDboltzmann was used to accurately predict the results of a novel D-amino acid scan of ATSP-7041. Our investigations rigorously validate CMDInventus and support its utility for enabling peptide drug design.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献